Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations.
نویسندگان
چکیده
The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations.
منابع مشابه
On the Role of Dewetting Transitions in Host–Guest Binding Free Energy Calculations
We use thermodynamic integration (TI) and explicit solvent molecular dynamics (MD) simulation to estimate the absolute free energy of host-guest binding. In the unbound state, water molecules visit all of the internally accessible volume of the host, which is fully hydrated on all sides. Upon binding of an apolar guest, the toroidal host cavity is fully dehydrated; thus, during the intermediate...
متن کاملEnergetics of Zn2+ adsorption in silicate MEL-type nanoporous material
Density-functional-based and ab initio calculations were implemented at different computational levels to estimate the binding energy of Zn2+ ion adsorbed on the available sites of a silicate MEL-type adsorbent. B3LYP and MP2 were used in combination with the 6-31G*, 6-31+G*, LanL2DZ, 6-311+G*, and Def2-TZVP basis sets. The zinc cation was found to preferentially occupy the 6MR sites followed b...
متن کاملSimple energy landscape model for the kinetics of functional transitions in proteins.
It is evident that protein conformational transitions play important roles in biological machinery; however, detailed pictures of these transition processes capable of making kinetic prediction are not yet available. For a full description of these transitions, we first need to describe kinematically movements between stable states. Then, more importantly, a free energy profile associated with ...
متن کاملLarge-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism.
Large-scale conformational changes in proteins are often associated with the binding of a substrate. Because conformational changes may be related to the function of an enzyme, understanding the kinetics and energetics of these motions is very important. We have delineated the atomically detailed conformational transition pathway of the phosphotransferase enzyme adenylate kinase (AdK) in the ab...
متن کاملOptimized potential of mean force calculations of standard binding free energy
The prediction of protein-ligand binding free energies is an important goal of computational biochemistry, yet accuracy, reproducibility and cost remain a problem. Nevertheless, these are essential requirements for computational methods to become standard binding prediction tools in discovery pipelines. Here we present the results of an extensive search for an optimal method based on an ensembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2012